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Abstract— This paper is concerned with the in-field au-
tonomous operation of unmanned marine vehicles in accordance
with convention for safe and proper collision avoidance as pre-
scribed by the Coast Guard Collision Regulations (COLREGS).
These rules are written to train and guide safe human operation
of marine vehicles and are heavily dependent on human common
sense in determining rule applicability as well as rule execution,
especially when multiple rules apply simultaneously. To capture
the flexibility exploited by humans, this work applies a novel
method of multi-objective optimization, interval programming,
in a behavior-based control framework for representing the
navigation rules, as well as task behaviors, in a way that achieves
simultaneous optimal satisfaction. We present experimental vali-
dation of this approach using multiple autonomous surface craft.
This work represents the first in-field demonstration of multi-
objective optimization applied to autonomous COLREGS-based
marine vehicle navigation.

I. INTRODUCTION

A. Motivation

Mobile robotic platforms deployed in the marine environ-
ment offer substantial benefits to society while bringing a
multitude of policy and legal challenges. Introducing mobile
robotic vessels into navigable waterways presents the risk of
collision with other vessels (both manned and unmanned),
personal injury and property damage. Until policy, law and
specifications evolve to address these issues, one can only
speculate on the requirements imposed on developers, owners
and operators of mobile robotic marine vehicles. However,
an inspection of the relevant legal standards concerning safe
operation of vessels in navigable waters reveals the likely need
of owners, operators and programmers to abide by the current
“rules of the road” given by the “Internation Regulations for
Prevention of Collision at Sea”, or the “COLREGS” [1]. It is
likely that as the use of mobile robotics continues to proliferate
within the marine environment a new legal framework will
evolve to address the ramifications of ownership and operation
of these assets. A prudent operator might take the stance that,
until the law catches up with the operation of these vehicles,
the smart move is to make the vehicles compliant with the
existing standards applicable to safe navigation [2], [3].
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B. Solution Framework

Although the COLREGS is a document suitable for guiding
human behavior, it is not suitable for direct input into a
vehicle control system. In practice, there are often multiple
rules simultaneously in effect, and to varying degrees. This
is particularly true in congested waters. In many situations
there are also multiple distinct vehicle maneuvers that would
satisfy a given rule. Humans are fairly good at dealing with
conflicting rules and capitalizing on flexibility within rules, but
these situations present the harder challenges for autonomous
vehicle control.

To address this problem, we have used a novel method of
multi-objective optimization, interval programming (IvP), [4],
within a behavior-based architecture for capturing COLREGS
rules. Each rule corresponds to a behavior that produces an
objective function over the vehicle’s decision, i.e., actuator,
space. The objective functions capture the behavior prescribed
by the COLREGS rule (in the peak areas of the function), but
also capture its flexibility (in the non-peak areas). Each itera-
tion of the vehicle control loop then involves the creation and
solution of a multi-objective optimization problem, where each
module contributes one function. This approach is suitable for
building additional mission modules, on top of a COLREGS
foundation where the mission modules also produce additional
functions alongside the COLREGS modules.

Results from simulation and results from in-field experi-
ments with multiple autonomous surface craft are reported to
validate these algorithms and architecture.

II. BACKGROUND
A. Behavior-Based Control

In behavior-based systems, robot or vehicle control is the
result of set of independent, specialized modules working to-
gether to choose appropriate vehicle actions. It can be viewed
as an alternative to the traditional sense-plan-act control loop
as shown in Fig. 1, where decision-making and planning
are performed on a single world model that is built up and
maintained over time.

Commonly cited virtues of behavior-based systems include:
the ease of development of the independent modules, the lack
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Fig. 1. Behavior-based control differs from conventional control by com-
posing overall vehicle behavior into distict modules that are developed and
operate largely in isolation, and coordinated through an action selection
mechanism. In this case, action selection is in the form of a new multi-
objective optimization technique to overcome known difficulties associated
with behavior-based control.

of a single complex world model, and the potential for a
highly reactive vehicle with certain behaviors triggered by the
appropriate events in a dynamic environment.

The origin of such systems is commonly attributed to
Brooks’ “subsumption architecture” in [5]. Since then, it has
been used in a large variety of applications including: indoor
robots, e.g., [6], [7], [8], [9], [10], [11], [12], [13], [14], land
vehicles, e.g., [15], planetary rovers, e.g., [16], [17], [18], and
marine vehicles, e.g., [19], [20], [21], [22], [23], [24], [25].

Action selection, as indicated in Fig. 1, is the process of
choosing a single action for execution, given the outputs of
the behaviors. The “action space” is the set of all possible
distinct actions. For example, all combinations of rotational
and angular velocity for a robot, or all speed, heading and
depth combinations for a marine vehicle.

B. Known Difficulties in Behavior-Based Control

The primary difficulty often associated with behavior-based
control concerns action selection - namely how to ensure the
chosen action really is in the best overall interest of the robot
or vehicle. An action generally is a vector of values, one for
each actuator being controlled. For example, the rotational and
angular velocity for a land robot, or heading, speed and depth
for a marine robot.

Generally there are two techniques used in practice. The
simplest method is to pick (at every iteration of the control
loop) a single behavior to have exclusive control of the vehicle.
Some approaches, like [21], [5], [26] assign a set of fixed
priorities to behaviors, and conditions for their activation. The
priorities do not change dynamically. In other implementa-
tions, like [23], priorities may be determined dynamically.
Although appealing due to its simplicity, it is problematic in
applications where the outright ignoring of the “secondary”
behaviors leads to gross vehicle inefficiency, as is the situation
with task described in this work.

The other common form of action selection, known variably
as “action averaging”, “vector summation” etc., takes the
output of each behavior in the form of a vector and uses the
average numerical value as the action sent to the vehicle’s
actuators. Summation is typically weighted to reflect behavior
priority. This method has been used effectively in a number
of applications, [6], [27], [28], [22], [29].

When the preferred actions of two distinct behaviors dis-
agree, this approach rests on the idea that the alternative ac-
tions degrade in effectiveness in a manner depicted in Fig.2. In
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Fig. 2. In action-averaging, each behavior outputs a single best action. The
best action presumably is the most effective among alternative actions for that
particular behavior. The effectiveness levels of alternative actions are rendered
here only for illustration and do not participate in the action averaging process.
When two behaviors are non-mutually exclusive and share common action
choices with high levels of effectiveness, as shown here, then action averaging
typically reflects an appropriate compromise between behaviors.

such a case, the action, or actuator setting, in between the two
individually preferred actions may indeed be the most effective
action overall. However, action averaging is problematic in
cases when alternative actions degrade in effectiveness in a
manner depicted in Fig. 3, where the numerical average does
not represent an effective compromise between two behaviors
that are, in effect, mutually exclusive.
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Fig. 3. The average of the best action produced by two behaviors may
have poor value for both behaviors. The chooser of the action is oblivious
to the error since the behaviors output a single preferred action and do not
communicate the underlying effectiveness of their alternatives, rendered here
only for illustration. In this case, interests being pursued by the two behaviors
are mutually exclusive, and the “compromise” is detrimental to both.

III. THE “IVP” ARCHITECTURE
A. Behavior-Based Control with Interval Programming

By using multi-objective optimization in action selection,
behaviors produce an objective function rather than a single
preferred action ( [10], [15], [30]). In the examples in Figs.
2 and 3, the objective functions are what distinguish oppor-
tunities for compromise. Note the pair of preferred actions in
Figs. 2 and 3 are virtually the same despite the differences in
utility of secondary alternatives.

There are two practical challenges in handling objective
functions: (1) the method must be fast enough to accommodate
the vehicle control loop, typically 1-20Hz. On each iteration
new functions are created and a new problem solved (speed
is a primary advantage of action averaging). (2) the method
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cannot be overly restrictive on objective function form. Non-
convex, multi-modal functions are quite common.

The interval programming model specifies (1) a scheme
for representing functions of unlimited form and (2) a set of
algorithms for finding the globally optimal solution. All func-
tions are piecewise linearly defined, thus they are typically an
approximation of a behavior’s true underlying utility function.
Search is over the weighted sum of individual functions and
uses branch and bound to search through the combination
space of pieces rather than the decision space of actions.
The only error introduced is in the discrepancy between a
behavior’s true underlying utility function and the piecewise
approximation produced to the solver. This error is preferable
compared with the error of restricting all behaviors to a
quadratic function for example. Furthermore, the search is
much faster than brute force evaluation of the decision space,
as done in [15]. The decision regarding function accuracy is
a local decision to the behavior designer, who typically has
insight into what is sufficient. The solver guarantees a globally
optimal solution and this work validates that such search
is feasible in a vehicle control loop of 4Hz on a 600MHz
computer.

To enhance search speed, the initial decision provided to
the branch and bound algorithm is the output of the previous
cycle, since typically what was a good thing to do a fraction
of a second prior, is not a bad thing at the present. (In fact,
when something does change dramatically in the world, such
as hitting a waypoint, the solve time has been observed to
be roughly 50% longer, but still comfortably under practical
constraints). See [4] for more on IvP and search algorithms.

B. The Decision Space and Vehicle Helm

Action selection here consists of deciding the variables,
heading (¢), speed (v), and time-on-leg (t). The latter is
the “intended” duration of the chosen action. The helm is
the module consisting of the behaviors and the optimization
(action selection) engine. The helm produces a tuple (6, v, t)
on every iteration of the control loop, and the values of heading
and speed are fed into PID control to produce rudder and
thruster commands.

The helm, through GPS, has access to its own position
(x, y), and through wireless communication has access to the
position, heading, and speed of a given vehicle (xp, yp, 0p, vp).
Each helm behavior has access to these variables, and they
comprise all the necessary input to the behaviors described
below for this work.

C. Closest Point of Approach

For COLREGS behaviors, an important quality of a can-
didate action (,v,t), is the closest point of approach (CPA)
between two vehicles during a candidate leg. Behaviors pro-
ducing objective functions over candidate actions (legs), need
to calculate this value quite often, and need to be efficient.
Thus, the algorithm and efficiency measures are given here.

For a given (,v,t), we compute the time ¢’ when the
minimum distance between two vehicles occurs given by:

dist?(0,v,t) = kot? + kit + ko, (1)
where
ky = % —2cos(0)v cos(Bp)vp + vZ — 2sin(0)v sin(0p)vp
k1 = 2cos(f)vy — 2 cos(8)vyp — 2y cos(Op)vp +
2 cos(Oy )vpyp + 2 sin(@)vx — 2sin(f)vey —
2 sin(6p)vp + 2 sin(fy)vpxy,
ko= y* = 2yys + i + 2% — 2wz + 3}

The stationary point is obtained by taking the first derivative
with respect to ¢:

dist?(0,v,t)" = 2kot + ky.

Since there is no “maximum” distance, this stationary point
always represents the closest point of approach, and therefore:

_ =k
2%k

The value of ¢’ is clipped by [0, ¢], and ' is zero when the two
vehicles have the same heading and speed (the only condition
where ko is zero). The CPA value is obtained by plugging
t’ back into (1). For fast behavior implementation, when a
behavior begins the job of creating an objective function,
prior to many CPA calculations, all terms in (1) comprised
exclusively of x, vy, xp, yp, 0, vp are calculated once and
stored for later calculations.

t/

IV. THE “BREAD AND BUTTER” BEHAVIORS
A primary motivation for applying multi-objective optimiza-
tion to the COLREGS navigation problem is that such be-
haviors could augment existing behaviors without any mutual
design consideration. We present two such “bread and butter”

behaviors sufficient for illustrating the subsequent description
of the COLREGS behaviors.

A. A Waypoint Behavior

The waypoint behavior is populated with a set of (z;,y;)
waypoints, and has access to the vehicle’s current position
(z,y) via GPS. It ranks candidate legs (f,v,t) based on the
proximity of the resulting position to the next waypoint.

Previous Waypoint Next Waypoint
[ )

Fig. 4. The objective function produced for the waypoint behavior rates
decisions higher that bring it closer to the next waypoint. The utility drops
linearly. Darker shades represent higher utility. Typically about 600 linear
pieces are used to represent this function.
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B. A Collision Avoidance Behavior

The collision avoidance behavior differs from the COL-
REGS behaviors only in that it doesn’t care how collisions
are avoided. It is based primarily on the CPA distance for a
candidate (0, v,t) decision. The CPA distance is applied to a
metric function that assigns a utility based on parameterizable
a “inner” distance and an “outer” distance. CPA distances
lower than the inner-distance are treated as collisions, and
values greater than the outer-distance have a plateau utility
nominally set to 100. (Functions are normalized prior to
the application of the priority weight, so utility ranges are
insignificant). CPA distance in between the outer-distance and
inner-distance degrade linearly, illustrated by the example in
Fig. 5.

(a) (b)

Fig. 5. The objective functions produced by the AvoidCollision behavior
for two situations. In both cases, the controlled vehicle has a top speed of
4 meters/second with the contact moving on the indicated heading. Darker
colors represent more favorable actions, and larger radii on the plot indicate
higher candidate speeds. The vehicles are 200 meters apart. CPA distances
less than 10 meters are considered collisions (in white) and those greater than
75 meters are neutral (in black). Distances in between degrade linearly. In (a)
the contact is moving at 3 m/s and in (b) the contact is moving at 5 m/s.

The priority of the behavior is determined by the CPA
distance of a hypothetical continuation of the current heading
and speed out another n seconds. A simulation track is shown
in Fig. 6.

Waypoint Waypoint

Fig. 6. In simulation, the lefthand vehicle is guided by a waypoint and
collision avoidance behavior to the point on the right. (Note this vehicle passes
to the opposite side as would be prescribed by the COLREGS. Compare
this trajectory with Fig. 12.) The righthand vehicle is executing a waypoint
behavior with no collision avoidance to the waypoint on the left. The function
rendered represents the addition of the two objective functions at that point
n time.

V. THE COLREGS BEHAVIORS

There are nearly 40 rules that comprise the “COLREGS”,
nearly half of which concern lighting and sounds. We fo-
cus our attention on the four most challenging rules, from
an autonomous navigation perspective, that cover “head-on”
situations and “crossing” situation, rules 14-16. It is also

worth noting rules 8(b), (d) which address collision avoidance
generally (all excerpts are from [1]):
Rule 8 :“Action to Avoid Collision”

(b) Any alteration of course and/or speed to avoid
collision shall, if the circumstances of the case admit, be
large enough to be readily apparent to another vessel
observing visually or by radar; a succession of small
alterations of course and/or speed should be avoided.

(d) Action taken to avoid collision with another vessel
shall be such as to result in passing at a safe distance.
The effectiveness of the action shall be carefully checked
until the other vessel is finally past and clear.

This rule reveals a measure of the flexibility common in the
rules, suitable for humans, but tricky for robots, such as “large
enough to be readily apparent”, and “small alterations of
course”. Generally the flexibility is found in both the condition
of the rule and the application of the rule. Exploiting the latter
is of paramount importance, since the rules need to at times
co-exist with other rules as well as the efforts of the vehicle
to complete its task.

A. The “Head-on” Behavior

The rule regarding two vessels approaching head-on is Rule
14 in [1]:
Rule 14 :“Head-on Situation”

(a) Unless otherwise agreed, when two power-driven
vessels are meeting on reciprocol ore nearly recipricol
courses so as to involve risk of collision each shall alter
her course to starboard so that each shall pass on the
port side of the other.

(b) Such a situation shall be deemed to exist when a
vessel sees the other ahead or nearly ahead and by night
she could see the mast-head lights of the other in a line
or nearly in a line or both sidelights and by day she
observes the corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a
situation exists she shall assume that it does exist and
act accordingly.

The objective function produced by this behavior is also
based on the closest point of approach for a given candidate
maneuver leg (6, v,t). The “head-on” condition referred to in
the rule is interpreted to be in effect when the relative bearing
between the two vehicles is within 15 degrees of the heading
of the contact. To achieve the desired effect, the candidate
heading is compared against the current relative bearing and
starboard maneuvers are rated higher, and likewise lower for
port maneuvers, as shown in Fig. 7.

In addition, the behavior given a range outside of which the
priority of the behavior is zero and is inactive (see Fig. 12(a).).

B. The “Crossing” Behaviors

COLREGS Rule 15 and 16 serve to define a “crossing”
situation.
Rule 15: “Crossing Situation”
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Fig. 7. The “head-on” behavior produces objective functions based in part
on the closest point of approach for a candidate maneuver and in part on
a preference for starboard maneuvers passing the contact on the port side.
Darker colors represent more favorable actions, and larger radii on the plot
indicate higher candidate speeds. Compare against Fig. 5(b) where maneuvers
to either side of the contact are nearly equal in preference.

(a) When two power-driven vessels are crossing so as to
involve risk of collision, the vessel which has the other on
her starboard side shall keep out of the way and shall, if the
circumstances of the case admit, avoid crossing ahead of the
other vessel.

Give-way Vessel -~ Stand—on Vessel

a "o

Fig. 8. The Give-way vessel yields to the Stand-on vessel.

Rule 16: “Action by Give-way Vessel”

Every vessel which is directed to keep out of the way of another
vessel shall, so far as possible, take early and substantial
action to keep well clear.

The objective function produced by this behavior also uti-
lizes closest point of approach for a given candidate maneuver
leg (0,v,t) in its objective function formulation.

The “crossing” condition referred to in the rule is interpreted
to be in effect when the relative bearing between the two
vehicles is greater than 15 degrees of the heading of the
contact, but less than 90 degrees. According to Rule 15,
crossing ahead of the other vessel is to be avoided. To represent
this preference in the objective function, a candidate leg,
(0,v,t), is further evaluated to determine if it crosses ahead
or behind the other vessel. The ranking of utility of an action
is penalized further if it crosses ahead, as shown in Fig. 9.

VI. EXPERIMENTS

Testing is done both in simulation and on two kayak-
based autonomous surface crafts depicted in Figs. 10 and 11.
Each vehicle had access to a compass and Garmin 18 GPS,
the latter with updates of 1Hz. The GPS also provided the
vehicle speed information, and at sufficiently high enough
speed (> 0.5m/s), the GPS was preferred over the compass
for heading measurements. Each vehicle communicated its
position, heading and speed to the other vehicle at a rate of

Fig. 9. The “crossing” behavior produces objective functions based in part
on the closest point of approach for a candidate maneuver and in part on
a preference maneuvers that do not cross ahead of the other vessel. Darker
colors represent more favorable actions, and larger radii on the plot indicate
higher candidate speeds. (Compare with Fig. 5(b).

Fig. 10. Two kayak-based autonomous surface craft for used for in-field
experiments. Each had access to GPS and shared their current position and
trajectory with the other.

4Hz, via a 802.11b wireless link.

Fig. 12 shows a representative experimental result that we
have achieved using the algorithm described above. This ex-
periment was designed to test "Rule 14 (Head-on Collision)”.
The caption in the figure provides a detailed step-by-step
account of how the correct behavior emerges based on the IvP
optimized action selection strategy described above in Section
I11.

Each vehicle was running a suite of processes each commu-
nicating through a central database process. This collection of
software is known as MOOS and is further described in [26].
It has been used effectively in a number of autonomous marine
vehicle projects, e.g., [31]. Each process subscribes to the
database process for information it needs and in turn publishes
information to the database that it would like to make available
to other processes. MOOS is an open source project that in-
cludes many utility processes besides the core communication
and scheduling functionality. The IvP Helm is a single process
in a community of MOOS processes that subscribes to vehicle
position information and publishes actuator commands (which
are in turn subscribed to by the processes interfacing with
the actuators). Many essential processes used to conduct these
experiments are part of the MOOS distribution.
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Fig. 12. In-field experiments with two autonomous kayaks verifying the COLREGS “Head-on” Rule 14 behavior. Vehicle 1 and 2 are put on a head-on

collision course through a series of waypoints. Vehicle 1 is utilizing a waypoint behavior and a “rule-14” behavior. Vehicle 2 is only using a waypoint behavior
and does not make any attempt at collision avoidance with vehicle 1. In (a) the two vehicles are on a head-on collision course with vehicle 1 heading to
waypoint (105, —35), and vehicle 2 heading to waypoint (—50, —110). In (a) only the waypoint behavior is active in vehicle 1 because vehicle 2 is still
outside the activation range. In (b) vehicle 1 is within the activation range and within the activation angle specified to the rule-14 behavior and is thus making
a starboard maneuver to avoid collision. In (c) vehicle 1 has just moved outside the activation angle and thus the rule-14 behavior becomes inactive, and the
influence of the waypoint behavior begins to dominate again. In (d) vehicle 1 is proceeding uninhibited toward its destination. The image is from video shot

during the experiment that produced the data shown here.

VII. CONCLUSION

This paper has investigated the problem of autonomous
collision avoidance and navigation for autonomous surface
craft. We have presented a novel method using IvP-based
multi-objective optimization to coordinate distinct vehicle
behaviors representing both task execution and established
human protocol for safe navigation. This paper also provides,
to our knowledge, the first ever demonstration of such a system
on a physical marine platform. Further research is necessary
to explore the robustness of this method in more complex
navigation scenarios, both in simulation and on the water.
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